VII All-Russian Conference with International Participation

Digital Technologies of the Future – Modern Solutions in Earth Sciences ITES-2025

Vladivostok, September 22-26, 2025

Artificial Intelligence (AI) in Exploration Targeting for Mineral Resources

Emmanuel John M. Carranza

Department of Geology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa

Content:

Part 1:

 Different branches or types of AI and developments in their applications in mineral exploration targeting

Part 2:

A case study on the use of AI to delineate exploration targets

EuroGeoSurveys 56th GM Directors' Workshop Rovaniemi, Finland, 20th March 2024

Part 1:

Artificial Intelligence (AI) in Mineral Exploration

John Carranza

Department of Geology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa

What is AI?

- Al is the science of making machines (i.e., computer algorithms) that can "think" like humans. It can do things that are considered "smart".
- Al is technology that can process large amounts of data in ways unlike humans.
- The goal for AI is to be able to recognize complex patterns from large amounts of data.
- Al leverages (i.e., uses to maximum advantage) machines to mimic the problem-solving and decision-making capabilities of the human mind.

Why use AI in Mineral Exploration Targeting?

Mineral Exploration (MinEx)

 the process of searching for evidence of any mineralization hosted in the surrounding rocks.*

Problem to be solved:

finding evidence of mineralization

Decisions to be made:

- Follow-up evidence with more detailed exploration or not?
- Which evidence is more important than another?
- Which area(s) with evidence of mineralization should be prioritized for further exploration?

^{*}from Geological Survey Ireland

Branches or Types of AI used in MinEx Targeting

- Expert system (ES)
- Fuzzy logic (FL)
- Machine learning (ML)
- Deep learning (DL)
- Natural Language Processing (NLP)

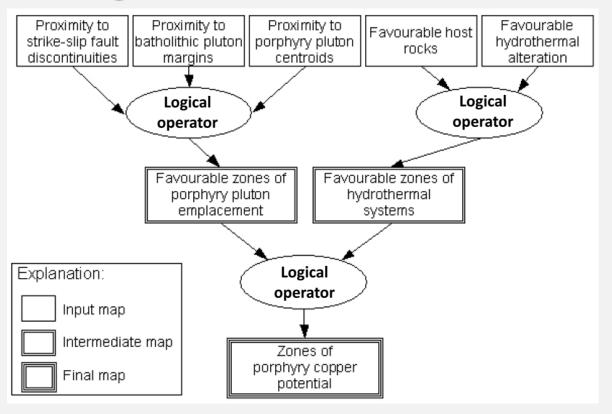
What is an ES?

- It is designed to solve complex, non-linear problems by reasoning through bodies of knowledge, represented mainly as if—then rules rather than through conventional procedural code.
- It's a computer program that uses AI technologies to simulate the judgment and behavior of a human or an organization that has expertise and experience in a particular field [https://www.techtarget.com]
- ESs are usually intended to complement, not replace, human experts.

What is an ES?

- The first ESs were created in the 1970s and then proliferated in the 1980s.
- ESs were among the first truly successful forms of Al software.
- An ES is divided into two subsystems: the knowledge base and the inference engine.
 - The knowledge base represents facts and rules.
 - The inference engine applies the rules to the known facts to deduce new facts.

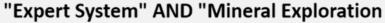
Inference engine

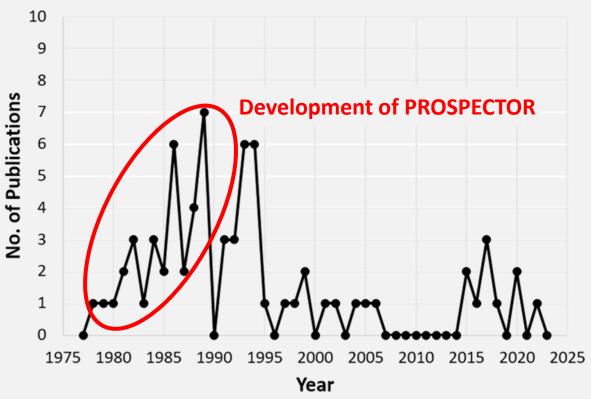


From:

Carranza, E.J.M., 2002. **Geologically-Constrained Mineral Potential Mapping (Examples from the Philippines)**. Ph.D. Thesis, Delft University of Technology, The Netherlands. (ISBN 90-6164-203-5), 480 pp.

Developments of ES in MinEx Targeting





ES in MinEx Targeting

Mathematical Geology, Vol. 10, No. 5, 1978

PROSPECTOR—A Computer-Based Consultation System for Mineral Exploration¹

P. E. Hart, 2R. O. Duda, 2 and M. T. Einaudi3

- Like any ES, it had two subsystems:
 - The knowledge base represents facts and rules.
 - The inference engine applies the rules to the known facts to deduce new facts.

ES in MinEx Targeting

Science

Recognition of a Hidden Mineral Deposit by an Artificial Intelligence Program

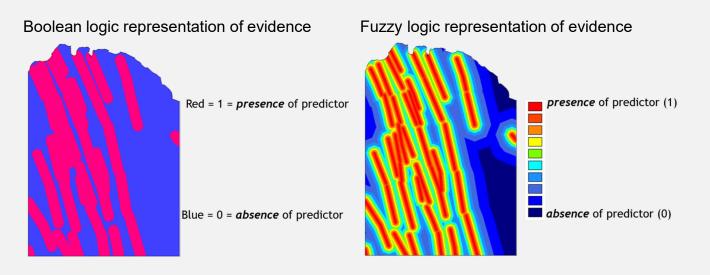
A. N. CAMPBELL, V. F. HOLLISTER, R. O. DUDA, AND P. E. HART Authors Info & Affiliations

SCIENCE • 3 Sep 1982 • Vol 217, Issue 4563 • pp. 927-929 • <u>DOI: 10.1126/science.217.4563.927</u>

- The PROSPECTOR has successfully identified the location of a porphyry molybdenum deposit.
- This was the only <u>documented</u> successful discovery ever made by PROSPECTOR.

What is FL?

It is an approach to <u>variable</u> (or <u>data</u>) <u>processing</u> that **allows for multiple possible 'truth' values** to be processed through the same variable.

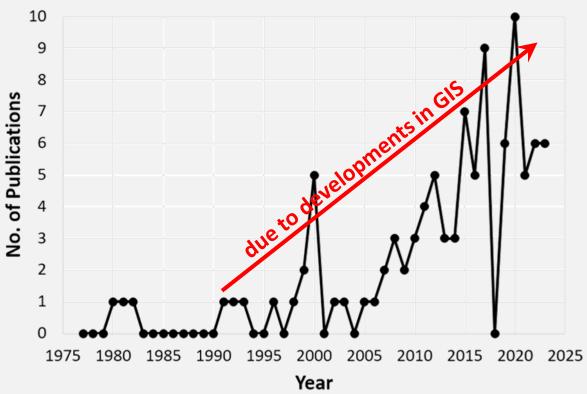


What is FL?

- It attempts to solve non-linear problems with an open, imprecise spectrum of data and heuristics (or rules) that make it possible to obtain an array of accurate conclusions.
- Like in an ES, a FL system has two subsystems
 - The knowledge base represents facts and rules.
 - The inference engine applies the rules to the known facts to deduce new facts.

Developments of FL in MinEx Targeting

"Fuzzy Logic" AND "Mineral Exploration"



What is ML?

- It is a branch of AI and computer science that focuses on the use of data and algorithms to imitate the way we humans learn, gradually improving its accuracy.
- It involves the use and development of computer systems that are able to learn and adapt complex, non-linear spatial relationships of mineral deposits and certain predictor variables, without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data

What is DL?

- DL is a method in AI that teaches computers to process data in a way that is inspired by the human brain.
- It is a type of ML based on artificial neural networks in which multiple layers of processing are used to extract progressively higher-level features from data (e.g., complex, non-linear spatial relationships of mineral deposits and certain predictor variables).

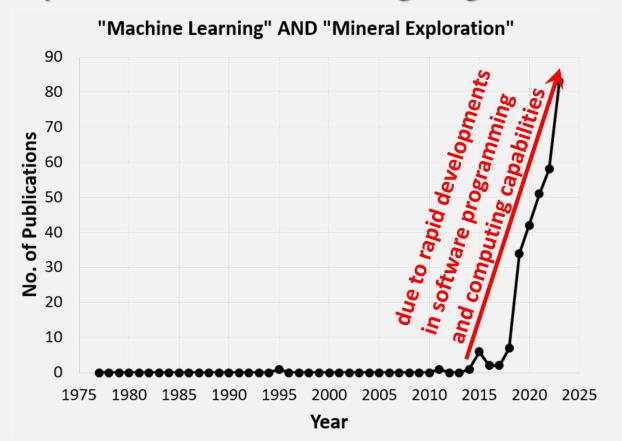
ML vs. DL

- Both ML and DL are types of AI that can automatically adapt with minimal human interference.
- ML encompasses a broad range of algorithms
- DL is a specialized subset of ML that uses artificial neural networks with more multiple layers (deep neural networks) to analyze data to mimic the learning process of the human brain.

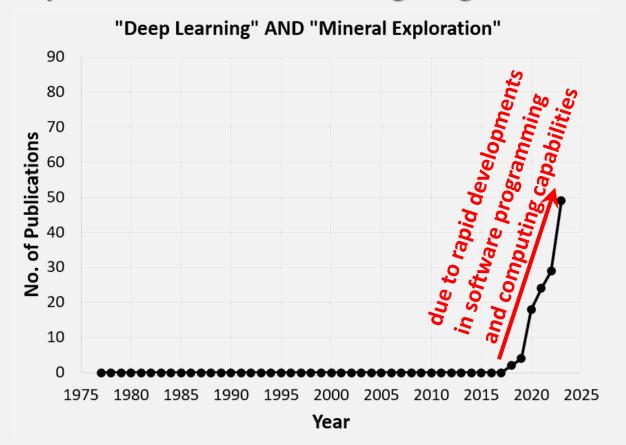
What is NLP?

- It is the ability of a computer program to understand human language as it is spoken and/or written referred to as natural language.
- It uses ML to process and interpret text and data.

Developments of ML in MinEx Targeting



Developments of DL in MinEx Targeting



Developments of NLP in MinEx Targeting

Natural Resources Research, vol.32, No. 4, August 2023 (© 2023) https://doi.org/10.1007/s11053-023-10216-1

Original Paper

Applications of Natural Language Processing to Geoscience Text Data and Prospectivity Modeling

Christopher J. M. Lawley, ^{1,6} Michael G. Gadd, ² Mohammad Parsa, ¹ Graham W. Lederer, ³ Garth E. Graham, ⁴ and Arianne Ford, ⁵

¹Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, ON K1A 0E8, Canada.

²Geological Survey of Canada, Natural Resources Canada, 3303 33 Street NW, Calgary, AB T2L 2A7, Canada.

³U.S. Geological Survey, Geology, Energy and Minerals Science Center, 12201 Sunrise Valley Drive, Mailstop 954, Reston, VA 20192-0002, USA.

⁴U.S. Geological Survey, Geology, Geochemistry, and Geophysics Science Center, Denver, CO 80225, USA.

⁵Geoscience Australia, 101 Jerrabomberra Ave, Symonston, ACT 2609, Australia.

⁶To whom correspondence should be addressed; e-mail: christopher.lawley@nrcan-rncan.gc.ca

Developments of NLP in MinEx Targeting

Natural Resources Research, Vol. 34, No. 2, April 2025 (© 2025) https://doi.org/10.1007/s11053-024-10438-x

Original Paper

Pan-Canadian Predictive Modeling of Lithium-Cesium-Tantalum Pegmatites with Deep Learning and Natural Language Processing

Mohammad Parsa,^{1,5} Christopher J. M. Lawley,¹ Tarryn Cawood,¹ Tania Martins,² Renato Cumani,¹ Steven E. Zhang,¹ Aaron Thompson,¹ Ernst Schetselaar,¹ Steve Beyer,¹ David R. Lentz,³ Jeff Harris,⁴ Hossein Jodeiri Akbari Fam,¹ and Alexandre Voinot¹

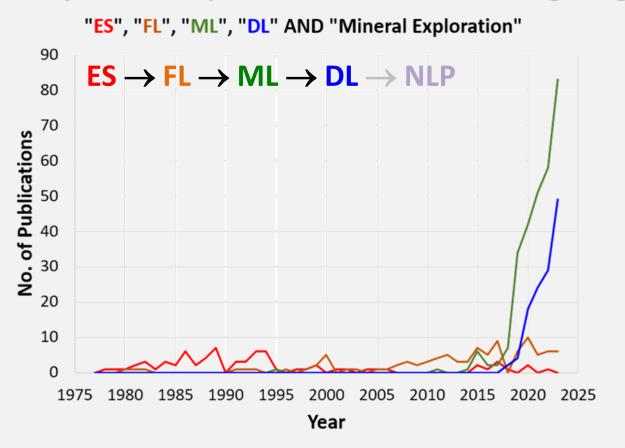
¹Natural Resources Canada, Geological Survey of Canada, 601 Booth Street, Ottawa, ON K1A 0E8, Canada.

²Manitoba Geological Survey, 360-1395 Ellice Avenue, Winnipeg, MB R3G 3P2, Canada.

³Department of Earth Sciences, University of New Brunswick, 2 Bailey Drive, Fredericton, NB E3B5A3, Canada.

⁴Mineral Exploration Research Center, Harquail School of Earth Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada. ⁵To whom correspondence should be addressed; e-mail: mo-hammad.parsasadr@nrcan-rncan.gc.ca

Summary of developments of AI in MinEx Targeting



Branches or Types of AI used in MinEx Targeting

- Expert system (ES)
- Fuzzy logic (FL)
- Machine learning (ML)
- Deep learning (DL)
- Natural Language Processing (NLP)

 All of them have been or are used in mineral prospectivity mapping (MPM), which supports MinEx targeting.

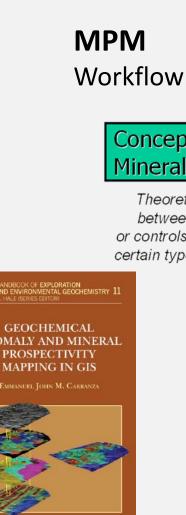
MPM

Definitions

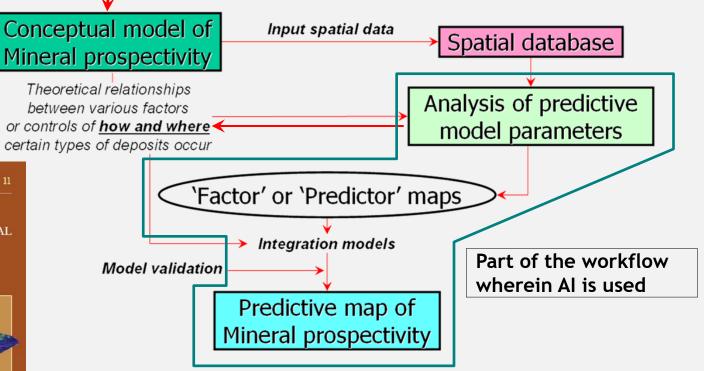
- Mineral prospectivity modeling = quantifying the likelihood of <u>where</u> mineral deposits may be found in a study area
- Mineral potential modeling = quantifying the likelihood of where mineral deposits may be contained in a study area
- Mineral prospectivity modeling

 Mineral potential modeling

Note: modeling ≅ mapping



- Earliest works were based on mineral deposit models
 - Recent works are based on mineral system concept

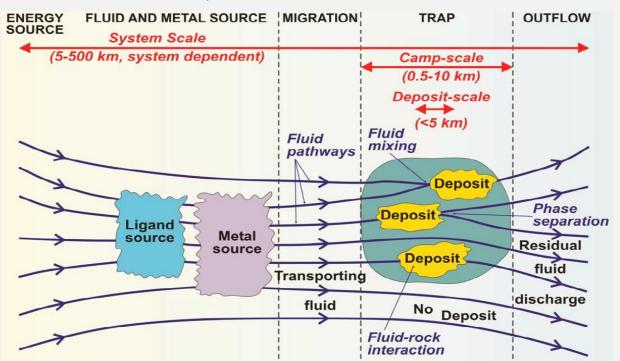


MPM

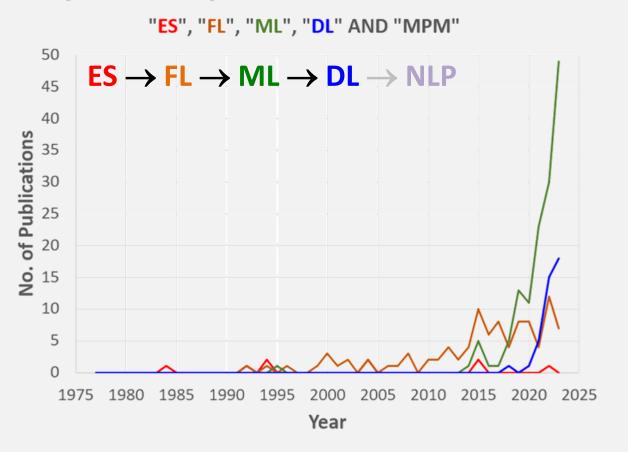
Mineral system concept

Conceptual Mineral System

(Knox-Robinson & Wyborn 1997)



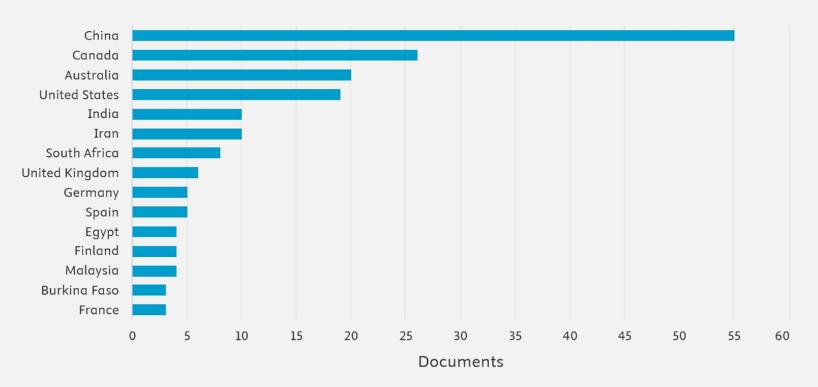
Summary of developments of AI in MPM



Use of AI in MinEx Targeting by country

Documents by country or territory

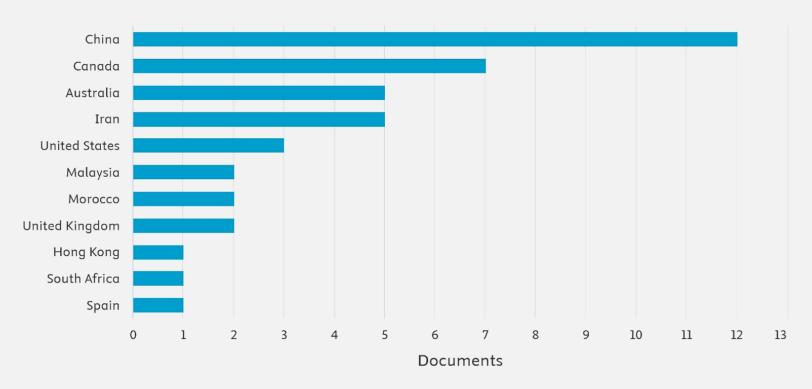
Compare the document counts for up to 15 countries/territories.



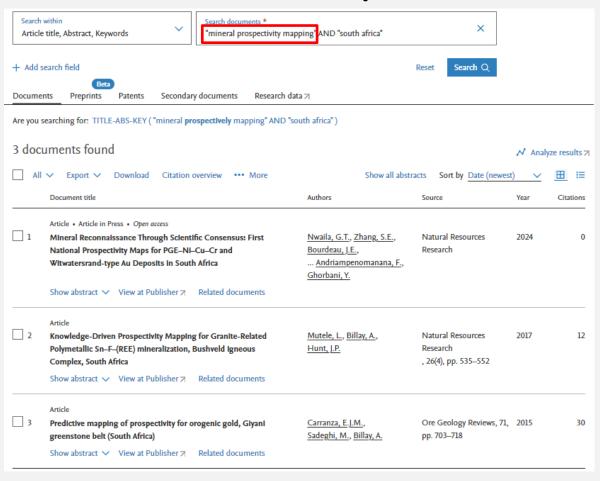
Use of AI in MPM by country

Documents by country or territory

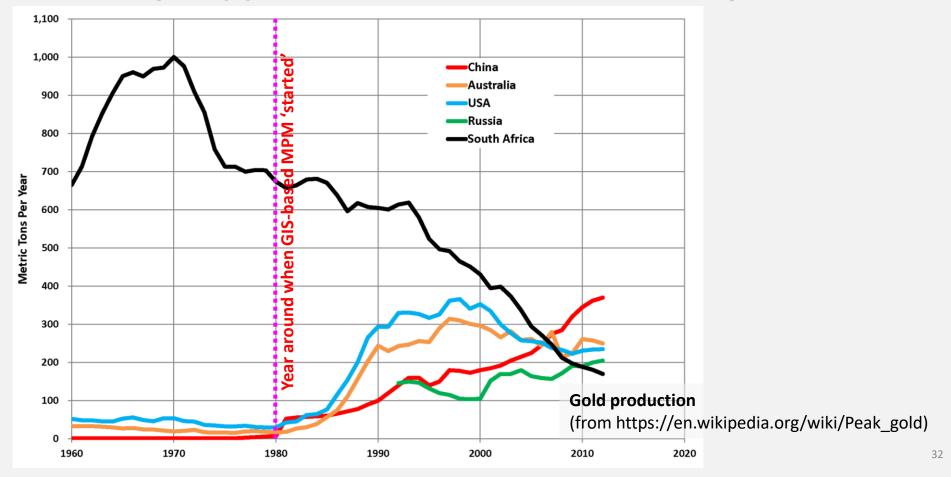
Compare the document counts for up to 15 countries/territories.



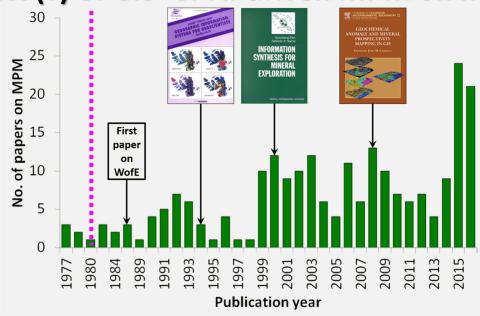
MPM in South Africa – Scopus search



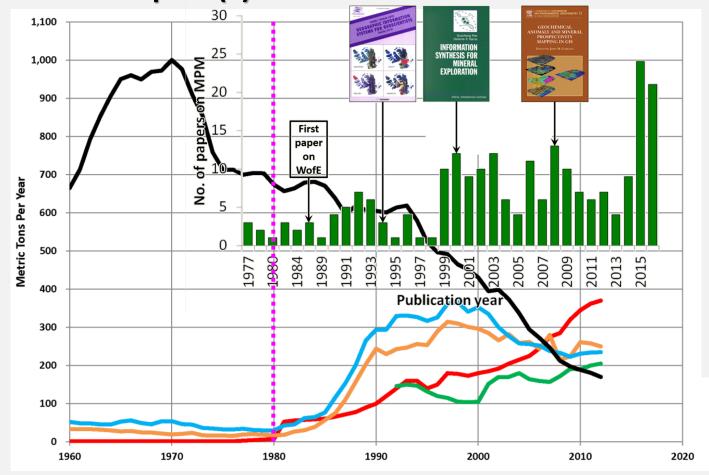
Impact (?) of GIS- or Al-driven MPM on metal production



Impact (?) of GIS- or Al-driven MPM on metal production



Impact (?) of GIS- or Al-driven MPM on metal production



GIS- or AI-based MPM leads to mineral deposit discovery, which leads to metal production

Part 1: Some final remarks

- As MinEx targeting proceeds deeper and deeper and as more and more MinEx data become available, recognizing deposit-related anomalies or modeling of mineral prospectivity from big data will become more and more challenging, justifying the need to use AI methods especially ML and DL.
 - Research on the use of AI in MinEx targeting worldwide is [still] growing.
- **Uncertainty** in Al-based predictions of deposit-related anomalies or mineral prospectivity, to assist MinEx targeting, will be an increasingly hot topic for research in the years to come.

VII All-Russian Conference with International Participation

Digital Technologies of the Future – Modern Solutions in Earth Sciences ITES-2025

Vladivostok, September 22-26, 2025

Part 2:

Detection of Significant Multielement Geochemical Anomalies by an Infomax – Deep Autoencoder Network

Saeid Esmaeiloghlia, Seyed Hassan Tabatabaeia, Emmanuel John M. Carranzab

^aDepartment of Mining Engineering, Isfahan University of Technology, Isfahan, Iran ^bDepartment of Geology, University of the Free State, Bloemfontein, South Africa

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Infomax-based deep autoencoder network for recognition of multi-element geochemical anomalies linked to mineralization

Saeid Esmaeiloghli ^{a, *}, Seyed Hassan Tabatabaei ^a, Emmanuel John M. Carranza ^b

Department of Mining Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran

^b Department of Geology, University of the Free State, Bloemfontein, 9301, South Africa

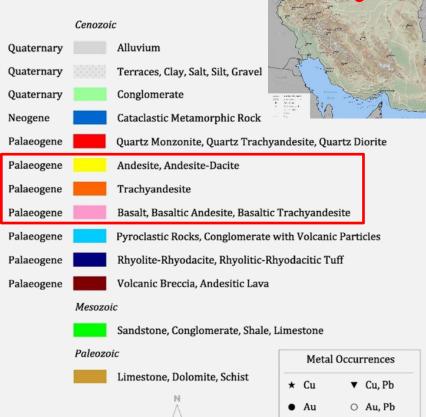
- Most techniques of geochemical anomaly mapping (GAM) depend on idealized assumptions about known probability distributions (e.g., Gaussian and multivariate Gaussian), linear characteristics, and lower-order statistics of uni-element and multi-element concentration data.
- However, geochemical data distributions are often characterized by nonlinearity and non-stationarity properties.
- Since the 2010s, ML algorithms have been used for GAM to avoid parametric statistical assumptions about the unknown probability distribution of geochemical data and, thereby, model complex geochemical anomaly patterns.

- More recently, **DL** methods have been used for recognition of complex anomaly patterns in non-linear Earth systems.
- In particular, the deep *autoencoder* network (DAN) has become a dominant method for recognizing anomalous geochemical patterns linked to mineralization (Xiong and Zuo, 2016; Zuo et al., 2019).
 - An autoencoder is a neural network consisting of an encoder and a decoder trained to learn reconstructions (cf. predictions) close to the original input.

- By training a DAN, multielement geochemical background is learnt by higher-level depictions of input signals, furnishing important indications for quantifying *reconstruction errors* associated with convoluted patterns of mineralization-vectoring geochemical anomalies.
 - A *reconstruction error* is the difference between the original input and the reconstruction output in an autoencoder.
- However, the ability of DAN to learn geochemical background could be stifled by (a) superfluous joint information from inter-element relationships and (b) assorted information from elemental values due to various geological/geochemical processes.

- To address the mentioned concerns, we propose a novel DL architecture called Infomax-DAN, which connects the Infomax (information maximization) processor to a DAN for geochemical data training.
- The **Infomax–DAN** is demonstrated in the analysis of drainage geochemical data from the Moalleman district (Iran) to assess its usefulness in detecting significant geochemical anomalies.

CASE STUDY AREA



10,000

Meters

 \triangle Pb

□ Zn

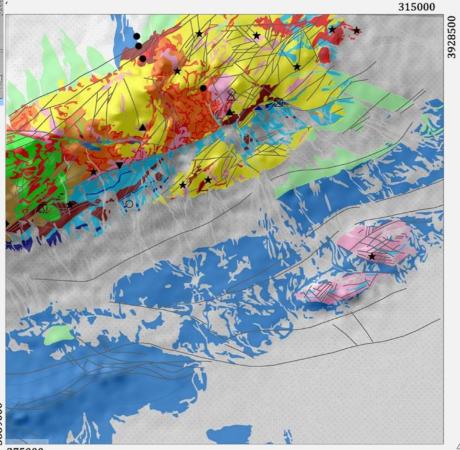
⊠ Cu, Ba

▲ Pb, Cu

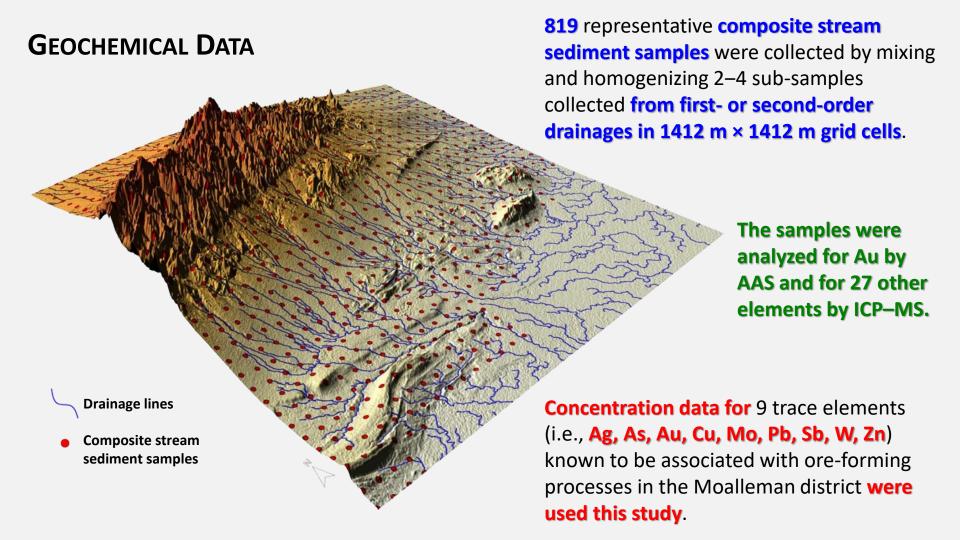
Zn, Pb

♦ Pb, Cu, Zn

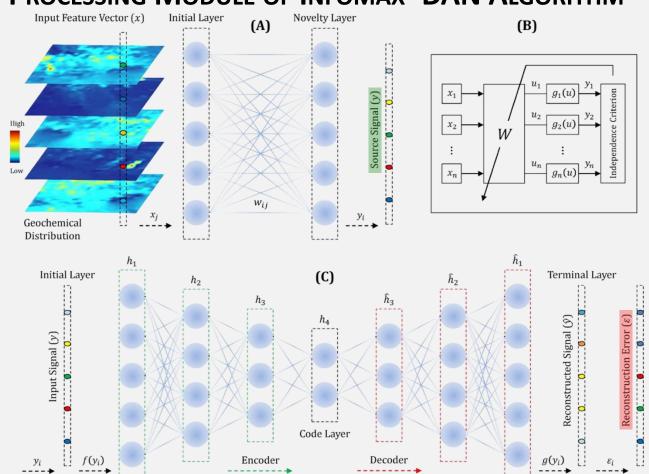
MOALLEMAN DISTRICT, IRAN



275000



PROCESSING MODULE OF INFOMAX-DAN ALGORITHM



- A. General structure of the Infomax algorithm.
- B. Diagram indicating the learning procedure of the Infomax algorithm
- C. General structure of the DAN

Circles and lines are neurons and connections, respectively.

RAW DATA

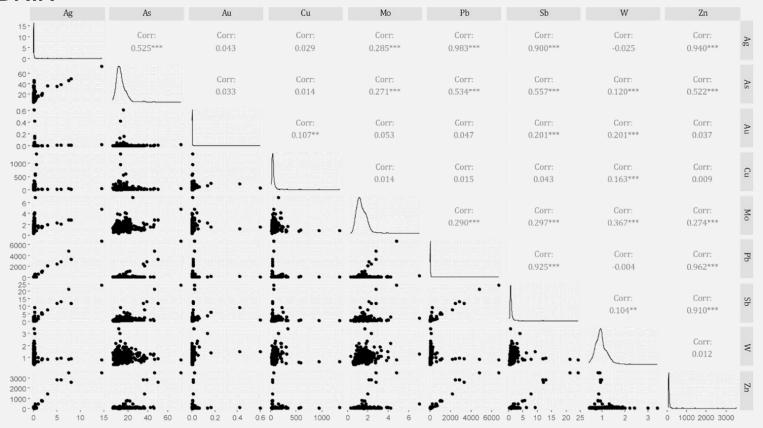


Fig. 4. Pairwise scatter plots, kernel density curves, and Pearson product-moment correlation coefficients for original raw data of multi-element concentrations. Significance asterisks stand for p – value $< 0.01^{**}$ and p – value $< 0.001^{***}$.

ILR-Transformed Data

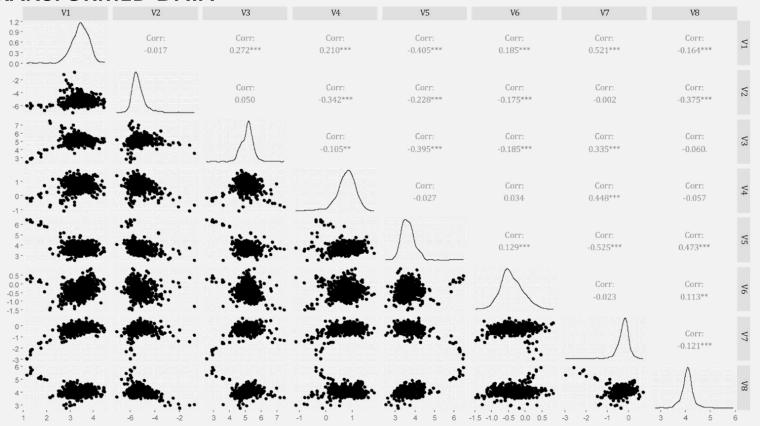


Fig. 5. Pairwise scatter plots, kernel density curves, and Pearson product-moment correlation coefficients for ilr-transformed data of multi-element concentrations. Significance asterisks stand for p – value $< 0.01^{**}$ and p – value $< 0.001^{***}$.

SOURCE SIGNALS RECOVERED BY INFOMAX

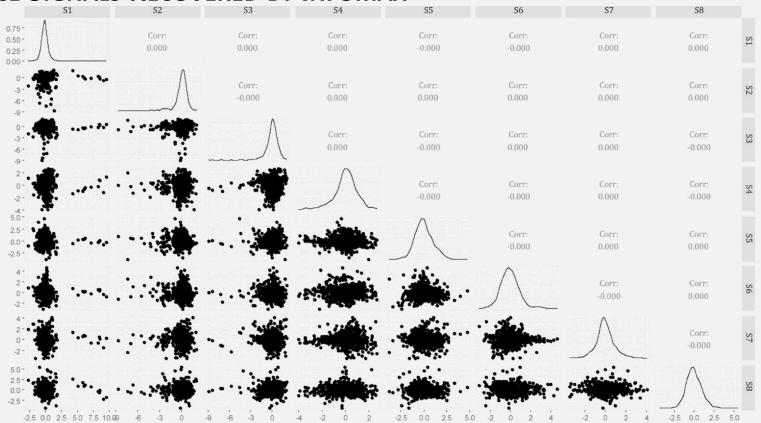
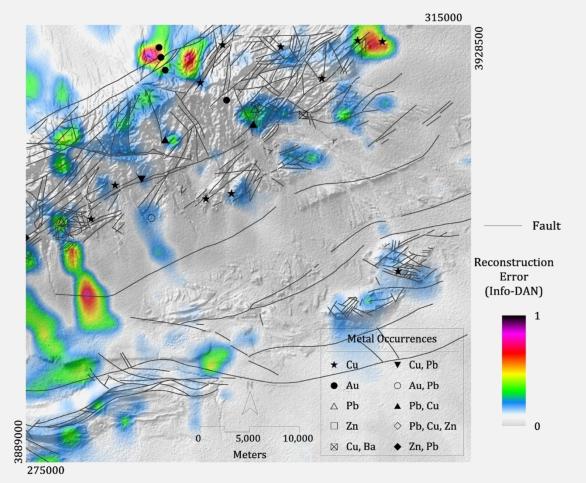
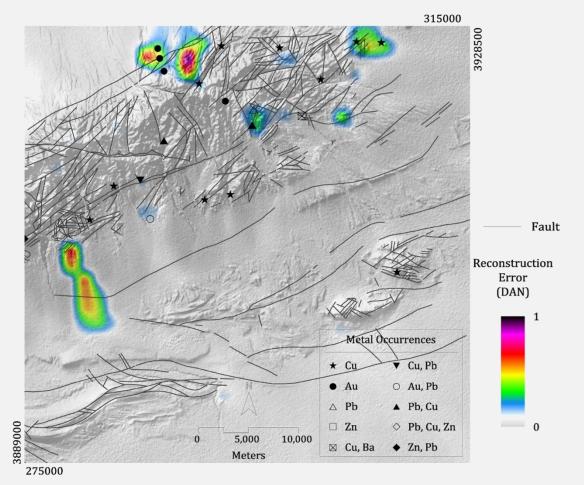


Fig. 8. Pairwise scatter plots, kernel density curves, and Pearson product-moment correlation coefficients for source signals of multi-element concentrations.

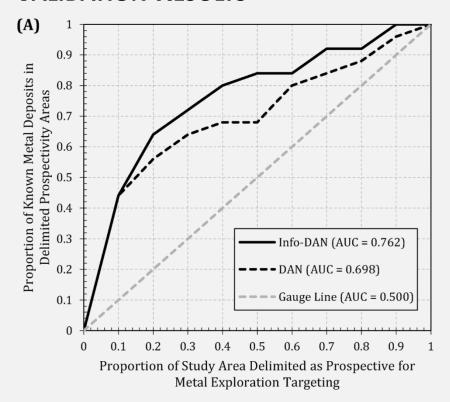
RECONSTRUCTION ERRORS OF RECONSTRUCTED MULTIVARIATE SOURCE SIGNALS

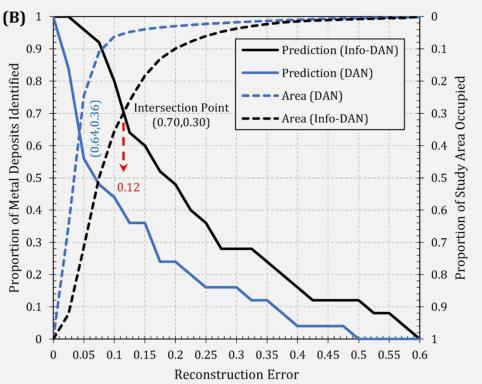


RECONSTRUCTION ERRORS OF RECONSTRUCTED MULTIVARIATE DATA

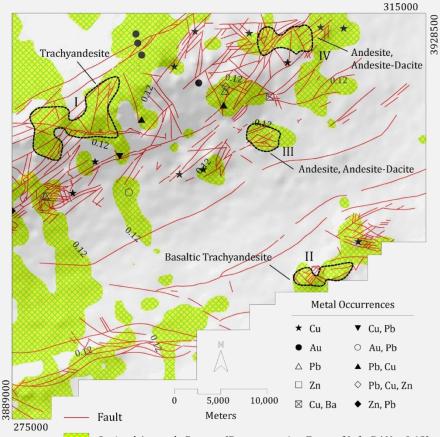


VALIDATION RESULTS





EXPLORATION TARGETS



Why use AI in Mineral Exploration?

- Mineral Exploration (MinEx)
 - the process of searching for evidence of any mineralization hosted in the surrounding rocks.*
- Problem to be solved:
 - · finding evidence of mineralization
- Decisions to be made:
 - Follow-up evidence with more detailed exploration or not?
 - Which evidence is more important than another?
 - Which area(s) with evidence of mineralization should be prioritized for further exploration?

*from Geological Survey Ireland

(https://www.gsi.ie/en-ie/programmes-and-projects/minerals/activities/mineral-exploration/Pages/default.aspx)

Optimal Anomaly Pattern (Reconstruction Error of Info-DAN > 0.12)

Exploration Priorities for Next Round of Metal Prospecting

Part 2: Conclusions

- By using the Infomax–DAN algorithm, the information of original multi-element data can be enhanced so that higherlevel representations of background populations could be reconstructed effectively, allowing for improved recovery of complex anomaly patterns
- Compared to a stand-alone DAN, the Infomax—DAN algorithm can detect more effectively complex geochemical anomaly patterns, and so it promotes the interpretation and generalization of geochemical models to support MinEx targeting

